论文标题

小齿轮:用于加速辐射转移模拟的物理信息的神经网络以进行宇宙电离

PINION: Physics-informed neural network for accelerating radiative transfer simulations for cosmic reionization

论文作者

Korber, Damien, Bianco, Michele, Tolley, Emma, Kneib, Jean-Paul

论文摘要

随着平方公里阵列天文台(SKAO)的出现,科学家将能够通过在不同的红移处绘制中性氢的分布来直接观察电离时代。虽然可以通过辐射传输代码来模拟具有物理动机的结果,但这些模拟在计算上很昂贵,并且无法同时产生所需的规模和分辨率。在这里,我们介绍了用于电离的物理信息(小齿轮),该神经网络可以准确而迅速地预测从预计的N体模拟的平滑气体和质量密度场中的完整4-D氢分子分数演变。我们对C $^2 $ ray仿真输出进行了训练,并强制对电离化学方程的物理限制进行了限制。只有五个红移快照和一个传播掩码作为电离光子均值自由路径的简单近似,小齿轮可以准确地预测整个电源历史记录$ z = 6 $和$ 12 $。我们通过分析无量纲的功率谱和形态统计估计来评估预测的准确性,以$^$^2 $ -RAIR的结果。我们表明,尽管该网络的预测与对红移$ z> 7 $的模拟非常吻合,但该网络的准确性以$ z <7 $的损失,主要是由于过度简化的传播掩码。我们激励如何大幅度改进小齿轮性能并可能将其推广到大规模模拟。

With the advent of the Square Kilometre Array Observatory (SKAO), scientists will be able to directly observe the Epoch of Reionization by mapping the distribution of neutral hydrogen at different redshifts. While physically motivated results can be simulated with radiative transfer codes, these simulations are computationally expensive and can not readily produce the required scale and resolution simultaneously. Here we introduce the Physics-Informed neural Network for reIONization (PINION), which can accurately and swiftly predict the complete 4-D hydrogen fraction evolution from the smoothed gas and mass density fields from pre-computed N-body simulation. We trained PINION on the C$^2$-Ray simulation outputs and a physics constraint on the reionization chemistry equation is enforced. With only five redshift snapshots and a propagation mask as a simplistic approximation of the ionizing photon mean free path, PINION can accurately predict the entire reionization history between $z=6$ and $12$. We evaluate the accuracy of our predictions by analysing the dimensionless power spectra and morphology statistics estimations against C$^2$-Ray results. We show that while the network's predictions are in good agreement with simulation to redshift $z>7$, the network's accuracy suffers for $z<7$ primarily due to the oversimplified propagation mask. We motivate how PINION performance can be drastically improved and potentially generalized to large-scale simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源