论文标题
欧几里得积分几何形状的尖锐相变
Sharp phase transitions in Euclidean integral geometry
论文作者
论文摘要
凸体的固有体积是基本不变的,可捕获有关凸体投影在固定维度的随机子空间上的平均体积的信息。固有体积在整体几何公式中也起着核心作用,描述了移动凸体的相互作用。最近的工作表明,固有体积的序列在其质心周围急剧集中,这称为中央固有体积。本文的目的是导致固有体积和相关序列的浓度不平等。这些浓度结果对高维积分几何形状具有显着意义。特别是,他们在公式中发现了新的相变,用于随机投影,旋转均值,随机切片和运动学公式。在每种情况下,通过将每个凸体减少到单个摘要参数来确定相变的位置。
The intrinsic volumes of a convex body are fundamental invariants that capture information about the average volume of the projection of the convex body onto a random subspace of fixed dimension. The intrinsic volumes also play a central role in integral geometry formulas that describe how moving convex bodies interact. Recent work has demonstrated that the sequence of intrinsic volumes concentrates sharply around its centroid, which is called the central intrinsic volume. The purpose of this paper is to derive finer concentration inequalities for the intrinsic volumes and related sequences. These concentration results have striking implications for high-dimensional integral geometry. In particular, they uncover new phase transitions in formulas for random projections, rotation means, random slicing, and the kinematic formula. In each case, the location of the phase transition is determined by reducing each convex body to a single summary parameter.