论文标题

在稀疏击球集上:从公平的顶点盖到高速公路尺寸

On Sparse Hitting Sets: from Fair Vertex Cover to Highway Dimension

论文作者

Blum, Johannes, Disser, Yann, Feldmann, Andreas Emil, Gupta, Siddharth, Zych-Pawlewicz, Anna

论文摘要

我们考虑稀疏的命中集(稀疏-HS)问题,其中给我们一个集合系统$(V,\ Mathcal {f},\ Mathcal {B})$,带有两个家庭$ \ MATHCAL {F},\ MATHCAL {f},\ Mathcal {B} $ of $ v $。该任务是为$ \ Mathcal {F} $找到一个击球集,该集合最小化$ \ m rathcal {b} $的任何集合中的最大元素数量。我们的重点是确定某些稀疏-HS的特殊情况相对于稀疏性$ k $的复杂性,这是任何一组$ \ MATHCAL {B} $中最佳的击球集元素数量。 对于稀疏顶点封面(稀疏VC)问题,$ V $由图的顶点集给出,而$ \ Mathcal {f} $是其边缘集。我们证明了稀疏性的NP硬度$ k \ geq 2 $和$ k = 1 $的多项式时间解决性。我们还为任何$ k $提供多项式时间$ 2 $ -APPRXIMATION。稀疏VC的一个特殊情况是Fair fear Tertex Cover(Fair-VC),其中$ \ Mathcal {b} $由Vertex社区给出。对于此问题,我们证明了常数$ k $的NP硬度,并提供多项式时间$(2- \ frac {1} {k})$ - 近似。这比稀疏VC或顶点覆盖物(UGC下)的任何近似值都要好。 然后,我们考虑与公路尺寸相关的稀疏HS(图形参数建模传输网络)的两个问题。低公路尺寸图表的大多数算法计算解决方案用于$ r $的最高路径封面($ r $ -spc)问题,其中$ r> 0 $,$ \ mathcal {f} $包含$ r $ $ $ $ r $和$ 2r $和$ 2r $和$ \ nathcal {b} $的所有最短路径,均包含$ 2r $ 2r $ 2r $ 2r $ 2 $ 2r $ 2r $ 2 rius $ 2 rius。如果输入图具有高速公路尺寸$ h $,则有一种XP算法,该算法将解决方案计算为$ h $的$ r $ spc,但如果FPT算法开放,则存在。我们证明$ r $ -spc以及相关的$ r $ -Highway尺寸($ r $ -hd)问题都是W [1] -hard。此外,我们证明$ r $ -spc承认多项式时间$ o(\ log n)$ - 近似。

We consider the Sparse Hitting Set (Sparse-HS) problem, where we are given a set system $(V,\mathcal{F},\mathcal{B})$ with two families $\mathcal{F},\mathcal{B}$ of subsets of $V$. The task is to find a hitting set for $\mathcal{F}$ that minimizes the maximum number of elements in any of the sets of $\mathcal{B}$. Our focus is on determining the complexity of some special cases of Sparse-HS with respect to the sparseness $k$, which is the optimum number of hitting set elements in any set of $\mathcal{B}$. For the Sparse Vertex Cover (Sparse-VC) problem, $V$ is given by the vertex set of a graph, and $\mathcal{F}$ is its edge set. We prove NP-hardness for sparseness $k\geq 2$ and polynomial time solvability for $k=1$. We also provide a polynomial-time $2$-approximation for any $k$. A special case of Sparse-VC is Fair Vertex Cover (Fair-VC), where the family $\mathcal{B}$ is given by vertex neighbourhoods. For this problem we prove NP-hardness for constant $k$ and provide a polynomial-time $(2-\frac{1}{k})$-approximation. This is better than any approximation possible for Sparse-VC or Vertex Cover (under UGC). We then consider two problems derived from Sparse-HS related to the highway dimension, a graph parameter modelling transportation networks. Most algorithms for graphs of low highway dimension compute solutions to the $r$-Shortest Path Cover ($r$-SPC) problem, where $r>0$, $\mathcal{F}$ contains all shortest paths of length between $r$ and $2r$, and $\mathcal{B}$ contains all balls of radius $2r$. There is an XP algorithm that computes solutions to $r$-SPC of sparseness at most $h$ if the input graph has highway dimension $h$, but the existence if an FPT algorithm was open. We prove that $r$-SPC and also the related $r$-Highway Dimension ($r$-HD) problem are both W[1]-hard. Furthermore, we prove that $r$-SPC admits a polynomial-time $O(\log n)$-approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源