论文标题
通过简化合成图像的气道测量改善特发性肺纤维化的死亡率预测
Airway measurement by refinement of synthetic images improves mortality prediction in idiopathic pulmonary fibrosis
论文作者
论文摘要
几种慢性肺疾病,例如特发性肺纤维化(IPF)的特征是气道异常扩张。计算机断层扫描(CT)上气道特征的定量可以帮助表征疾病进展。已经开发了基于物理的气道测量算法,但由于在临床实践中看到的气道形态多样性,因此取得了有限的成功。由于获得精确的气道注释的高成本,监督学习方法也不可行。我们建议使用感知损失通过样式转移来培训我们的模型,气道转移网络(ATN)。我们使用a)定性评估将ATN模型与最先进的GAN网络(SIMGAN)进行比较; b)评估基于ATN和SIMGAN的CT气道指标预测113例IPF患者死亡率的能力。与Simgan相比,ATN被证明更快,更容易训练。还发现,基于ATN的气道测量值始终比IPF CTS上的SIMGAN衍生的气道指标更强大。通过转化网络使用感知损失来完善综合数据的转化网络是基于GAN的方法的一种现实替代方法,用于用于特发性肺纤维化的临床CT分析。我们的源代码可以在https://github.com/ashkanpakzad/atn上找到,该源代码与现有的开放源源Airway Analysis框架兼容。
Several chronic lung diseases, like idiopathic pulmonary fibrosis (IPF) are characterised by abnormal dilatation of the airways. Quantification of airway features on computed tomography (CT) can help characterise disease progression. Physics based airway measurement algorithms have been developed, but have met with limited success in part due to the sheer diversity of airway morphology seen in clinical practice. Supervised learning methods are also not feasible due to the high cost of obtaining precise airway annotations. We propose synthesising airways by style transfer using perceptual losses to train our model, Airway Transfer Network (ATN). We compare our ATN model with a state-of-the-art GAN-based network (simGAN) using a) qualitative assessment; b) assessment of the ability of ATN and simGAN based CT airway metrics to predict mortality in a population of 113 patients with IPF. ATN was shown to be quicker and easier to train than simGAN. ATN-based airway measurements were also found to be consistently stronger predictors of mortality than simGAN-derived airway metrics on IPF CTs. Airway synthesis by a transformation network that refines synthetic data using perceptual losses is a realistic alternative to GAN-based methods for clinical CT analyses of idiopathic pulmonary fibrosis. Our source code can be found at https://github.com/ashkanpakzad/ATN that is compatible with the existing open-source airway analysis framework, AirQuant.