论文标题
有界全态半群的定量估计值
Quantitative estimates for bounded holomorphic semigroups
论文作者
论文摘要
在本文中,我们重新审视了Banach空间上线性操作员的单参数半群的理论,以证明有界的全态半群的定量界限。随后,依靠这些界限,我们获得了与矢量价值的Littlewood-Paley-Stein理论有关的两个最新结果的新定量版本,用于对称扩散半群。
In this paper we revisit the theory of one-parameter semigroups of linear operators on Banach spaces in order to prove quantitative bounds for bounded holomorphic semigroups. Subsequently, relying on these bounds we obtain new quantitative versions of two recent results of Xu related to the vector-valued Littlewood--Paley--Stein theory for symmetric diffusion semigroups.