论文标题
缓慢热力学过程中的工作统计数据
Work statistics in slow thermodynamic processes
论文作者
论文摘要
我们将绝热近似应用于缓慢但有限的热力学过程,并获得完整的工作统计数据。平均工作包括自由能的变化和消散的工作,我们将每个术语确定为类似于几何相的数量。明确给出了摩擦张量的表达,热力学几何形状的关键量。事实证明,动态和几何阶段通过波动散落关系相互关联。
We apply the adiabatic approximation to slow but finite-time thermodynamic processes and obtain the full counting statistics of work. The average work consists of change in free energy and the dissipated work, and we identify each term as a dynamical- and geometric-phase-like quantity. An expression for the friction tensor, the key quantity in thermodynamic geometry, is explicitly given. The dynamical and geometric phases are proved to be related to each other via the fluctuation-dissipation relation.