论文标题
在预期利率约束下具有多个决策中心的多跳网络
Multi-Hop Network with Multiple Decision Centers under Expected-Rate Constraints
论文作者
论文摘要
我们考虑了一个多跳的分布式假设检验问题,该问题具有多个决策中心(DC),用于针对独立性的测试以及观察结果遵守某些马尔可夫链。对于此系统,我们表征了基本类型的II误差指数区域,即在预期的速率构成下,各种DC可以同时实现的类型II误差指数。我们的结果表明,在最大率约束下,与该区域相比,该基本指数区域被增强,并且取决于允许的I型误差概率。当所有DC具有相等允许的I型误差概率时,指数区域为矩形,所有DC可以同时实现其最佳的II型误差指数。当DC具有不同的允许I型错误概率时,在不同DC处的II型错误指数之间的权衡。提出了新的可实现性和相反的证据。为了实现能力,提出了一种新的多重和利率分享策略。相反的证明是基于并联和证明渐近马尔可夫链的不同度量参数变化。对于特殊情况,$ k = 2 $和$ k = 3 $,我们为指数区域提供简化的表达式;对任意$ k \ geq 2 $的猜想也有类似的简化。
We consider a multi-hop distributed hypothesis testing problem with multiple decision centers (DCs) for testing against independence and where the observations obey some Markov chain. For this system, we characterize the fundamental type-II error exponents region, i.e., the type-II error exponents that the various DCs can achieve simultaneously, under expected rate-constraints. Our results show that this fundamental exponents region is boosted compared to the region under maximum-rate constraints, and that it depends on the permissible type-I error probabilities. When all DCs have equal permissible type-I error probabilities, the exponents region is rectangular and all DCs can simultaneously achieve their optimal type-II error exponents. When the DCs have different permissible type-I error probabilities, a tradeoff between the type-II error exponents at the different DCs arises. New achievability and converse proofs are presented. For the achievability, a new multiplexing and rate-sharing strategy is proposed. The converse proof is based on applying different change of measure arguments in parallel and on proving asymptotic Markov chains. For the special cases $K = 2$ and $K = 3$, we provide simplified expressions for the exponents region; a similar simplification is conjectured for arbitrary $K\geq 2$.