论文标题

HDG-P0方案的最佳几何多移民预处理和反应扩散方程和广义Stokes方程

Optimal geometric multigrid preconditioners for HDG-P0 schemes for the reaction-diffusion equation and the generalized Stokes equations

论文作者

Fu, Guosheng, Kuang, Wenzheng

论文摘要

对于反应扩散方程,我们介绍了具有数值集成(正交)的最低级杂交杂交盖素方案(正交),称为HDG-P0,以及在二维和三维中构造简单网格的广义stokes方程。在这里,我们的意思是,全球HDG方面的自由度(DOF)的(混合)有限元空间是网格骨架上的分段常数的空间。不连续的分段线性空间用于局部原始未知数的近似。我们给出了最佳{\ sf HDG-P0}方案的先验错误分析,就数值集成而言,该方案尚未出现在文献中。 此外,我们建议在构成简单网格的静态凝结HDG-P0线性系统中为最佳的几何多机预处理。在这两种情况下,我们都首先建立了静态凝结的HDG系统的等效性,该系统具有(稍微修改的)不合格的Crouzeix-raviart(CR)离散化,其中网状骨架上的全局(分段恒定)HDG有限元元素具有与不合格的CR(分支机构)的自然相应的,该元素是自然的。然后,这种等效性使我们能够使用良好的不合格几何学多机理论来预先凝结HDG系统。提出了两维的数值结果,以验证我们的理论发现。

We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0, for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed {\sf HDG-P0} schemes, which hasn't appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix-Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源