论文标题

连续矩阵产品状态的纠缠重新归一化状态

Entanglement Renormalization of the class of Continuous Matrix Product States

论文作者

Vardian, Niloofar

论文摘要

连续张量网络为量子场理论(QFTS)的基态提供了差异ANSATZ。值得注意的例子是连续矩阵乘积状态(CMP)和连续的多尺寸纠缠重归其化ANSATZ(CMERA)。尽管CMP仅适用于非相关的QFT,但只有高斯CMERA才能理解,我们无法用来近似相互作用的相对论QFT的基态。但是,相反,CMERA还对应于波函数上下文中的真实空间重新归一化组流。在这封信中,我们通过将标准CMP放入IR量表中调查了CMPS类的向后高斯CMERA重新归一化组流量。在紫外线尺度上,对于热力学极限的玻色粒系统,我们实现了最近提出的变异类别,因为相对论CMP(RCMP)适用于相对论QFT,而无需引入任何其他IR或UV临界值。我们还将RCMP扩展到有限圆圈上的费米子系统和理论。

Continuous tensor network gives a variational ansatz for the ground state of the quantum field theories (QFTs). The notable examples are the continuous matrix product state (cMPS) and the continuous multiscale entanglement renormalization ansatz (cMERA). While cMPS is just adapted to the non-relativistic QFTs, only the Gaussian cMERA is well-understood which we can not use to approximate the ground state of the interacting relativistic QFTs. But instead, cMERA also corresponds to a real-space renormalization group flow in the context of the wave functions. In this letter, we investigate the backward Gaussian cMERA renormalization group flow of the class of cMPS by putting the standard cMPS at the IR scale. At the UV scale, for the bosonic systems in the thermodynamic limit, we achieve the variational class of states that has been proposed recently as the relativistic cMPS (RCMPS) is adapted to the relativistic QFTs without requiring to introduce of any additional IR or UV cut-off. We also extend the RCMPS to fermionic systems and theories on a finite circle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源