论文标题

基于深度学习的设备指纹识别,以提高Lora-iot安全性:对网络部署的敏感性变化

Deep-Learning-Based Device Fingerprinting for Increased LoRa-IoT Security: Sensitivity to Network Deployment Changes

论文作者

Hamdaoui, Bechir, Elmaghbub, Abdurrahman

论文摘要

基于深度学习的设备指纹识别最近被认为是自动化网络访问身份验证的关键推动力。由于复制物理特征的固有难度,其对模仿攻击的稳健性是区别于常规加密解决方案的原因。尽管设备指纹刻印已显示出令人鼓舞的性能,但其对网络操作环境变化的敏感性仍然构成主要限制。本文提出了一个实验框架,旨在研究和克服支持Lora的设备指纹对此类变化的敏感性。首先,我们首先描述使用启用LORA的无线设备测试台收集的RF数据集。然后,我们提出了一种新的指纹技术,该技术利用了由硬件损伤引起的带外失真信息,以提高指纹精度。最后,我们通过实验研究和分析Lora RF指纹对各种网络设置变化的敏感性。我们的结果表明,当在相同的设置下对学习模型进行培训和测试时,指纹识别相对较好。但是,当在不同的设置下接受训练和测试时,这些模型对通道状况的变化表现出适度的敏感性,以及对协议配置和接收器硬件的严重敏感性,当使用智商数据用作输入时。但是,使用FFT数据用作输入,它们在任何变化下都表现不佳。

Deep-learning-based device fingerprinting has recently been recognized as a key enabler for automated network access authentication. Its robustness to impersonation attacks due to the inherent difficulty of replicating physical features is what distinguishes it from conventional cryptographic solutions. Although device fingerprinting has shown promising performances, its sensitivity to changes in the network operating environment still poses a major limitation. This paper presents an experimental framework that aims to study and overcome the sensitivity of LoRa-enabled device fingerprinting to such changes. We first begin by describing RF datasets we collected using our LoRa-enabled wireless device testbed. We then propose a new fingerprinting technique that exploits out-of-band distortion information caused by hardware impairments to increase the fingerprinting accuracy. Finally, we experimentally study and analyze the sensitivity of LoRa RF fingerprinting to various network setting changes. Our results show that fingerprinting does relatively well when the learning models are trained and tested under the same settings. However, when trained and tested under different settings, these models exhibit moderate sensitivity to channel condition changes and severe sensitivity to protocol configuration and receiver hardware changes when IQ data is used as input. However, with FFT data is used as input, they perform poorly under any change.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源