论文标题
矢量组的超平面布置和压缩
Hyperplane Arrangements and Compactifications of Vector Groups
论文作者
论文摘要
超平面布置的舒伯特品种,也称为Matroid Schubert品种,在Dowling-Wilson猜想的证明和Matroids的Kazhdan-Lusztig理论中起着至关重要的作用。我们将这些品种研究为仿生空间的等效压缩,并提供了表征它们的必要条件。我们还将理论推广到它们之间包括部分压缩和形态。我们的结果类似于感谢您的品种和多面体风扇之间的对应关系。
Schubert varieties of hyperplane arrangements, also known as matroid Schubert varieties, play an essential role in the proof of the Dowling-Wilson conjecture and in Kazhdan-Lusztig theory for matroids. We study these varieties as equivariant compactifications of affine spaces, and give necessary and sufficient conditions to characterize them. We also generalize the theory to include partial compactifications and morphisms between them. Our results resemble the correspondence between toric varieties and polyhedral fans.