论文标题
复杂的蒙格 - 安培方程的定量稳定性
Quantitative stability for the complex Monge-Ampere equations
论文作者
论文摘要
我们证明,当协同学类别和规定的奇异性变化时,对复杂蒙格 - 安培方程解的解决方案的解决方案进行了几个定量稳定性估计。从广义上讲,我们的结果非常适合研究Kaehler-Einstein指标家族的变性。我们方法中的关键机制是有限较低能量势能的多功能理论。
We prove several quantitative stability estimates for solutions of complex Monge-Ampere equations when both the cohomology class and the prescribed singularity vary. In a broad sense, our results fit well into the study of degeneration of families of Kaehler-Einstein metrics. The key mechanism in our method is the pluripotential theory in the space of potentials of finite lower energy.