论文标题
异质图树网络
Heterogeneous Graph Tree Networks
论文作者
论文摘要
近三年来,异质图神经网络(HGNN)吸引了研究的兴趣。大多数现有的HGNN分为两个类。一个类是基于元路径的HGNN,要么需要域知识才能手工制作元路径,要么花费大量时间和内存来自动构建元路径。另一个类不依赖元路径结构。它将均匀的卷积图神经网络(Conv-GNN)作为骨架,并通过引入节点型和边缘型依赖性参数将其扩展到异质图。不管元路径依赖性如何,大多数现有的HGNN都采用浅层探测器(例如GCN和GAT)来汇总邻里信息,并且可能有限地捕获高级邻里信息的能力。在这项工作中,我们提出了两个异构图树网络模型:异质图树卷积网络(HETGTCN)和异质图树注意网络(HETGTAN),它们不依赖于元数据来在两个节点特征和图形结构中编码异质性。在三个现实世界的异质图数据上进行了广泛的实验表明,所提出的HETGTCN和HETGTAN具有有效的效率,并且始终如一地超过了所有最先进的HGNN基准基线,而在半手不足的节点分类任务上,并且可以深入且无需损害表现就可以进行深度。
Heterogeneous graph neural networks (HGNNs) have attracted increasing research interest in recent three years. Most existing HGNNs fall into two classes. One class is meta-path-based HGNNs which either require domain knowledge to handcraft meta-paths or consume huge amount of time and memory to automatically construct meta-paths. The other class does not rely on meta-path construction. It takes homogeneous convolutional graph neural networks (Conv-GNNs) as backbones and extend them to heterogeneous graphs by introducing node-type- and edge-type-dependent parameters. Regardless of the meta-path dependency, most existing HGNNs employ shallow Conv-GNNs such as GCN and GAT to aggregate neighborhood information, and may have limited capability to capture information from high-order neighborhood. In this work, we propose two heterogeneous graph tree network models: Heterogeneous Graph Tree Convolutional Network (HetGTCN) and Heterogeneous Graph Tree Attention Network (HetGTAN), which do not rely on meta-paths to encode heterogeneity in both node features and graph structure. Extensive experiments on three real-world heterogeneous graph data demonstrate that the proposed HetGTCN and HetGTAN are efficient and consistently outperform all state-of-the-art HGNN baselines on semi-supervised node classification tasks, and can go deep without compromising performance.