论文标题

恢复强烈混乱的相互作用链中的恐怖性

Restoring ergodicity in a strongly disordered interacting chain

论文作者

Krajewski, B., Vidmar, L., Bonca, J., Mierzejewski, M.

论文摘要

我们考虑了与随机疾病的一系列相互作用的费米子链,该链在多体定位的背景下进行了深入研究。我们表明,只有一小部分两体相互作用代表了对安德森绝缘子的真正局部扰动。尽管这种真实的扰动在任何有限疾病强度W上都不为零,但随着W的增加,它会降低。这表明应将强大无序的系统视为弱扰动的集成模型,即弱扰动的Anderson绝缘体。结果,后者几乎不能与大w的有限大小计算中的严格集成系统区分开。然后,我们引入了一个重新定型的模型,在该模型中,真正的扰动与汉密尔顿人的其他术语的数量级相同,并显示该系统在任意大型疾病中仍然具有细感性。

We consider a chain of interacting fermions with random disorder that was intensively studied in the context of many-body localization. We show that only a small fraction of the two-body interaction represents a true local perturbation to the Anderson insulator. While this true perturbation is nonzero at any finite disorder strength W, it decreases with increasing W. This establishes a view that the strongly disordered system should be viewed as a weakly perturbed integrable model, i.e., a weakly perturbed Anderson insulator. As a consequence, the latter can hardly be distinguished from a strictly integrable system in finite-size calculations at large W. We then introduce a rescaled model in which the true perturbation is of the same order of magnitude as the other terms of the Hamiltonian, and show that the system remains ergodic at arbitrary large disorder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源