论文标题

基于幽灵点的二阶准确有限差异方法,用于统一的正交网格,用于围绕PEC的电磁散射

A ghost-point based second order accurate finite difference method on uniform orthogonal grids for electromagnetic scattering around PEC

论文作者

Lee, Hwi, Liu, Yingjie

论文摘要

我们提出了一种有限的差异方法,可以在存在阻碍电磁波传播的完美电导体的情况下解决时域的麦克斯韦方程。我们的方法是对Zou和Liu [36]现有方法的修改,从本地扰动的身体构成的网格到复杂的PEC对象的均匀正交网格。与他们的工作类似,我们通过利用接口的级别集合和基于PDE的扩展技术来推断幽灵点值,这使我们能够规避接口的本地几何形状。我们根据我们的外推的准确性规定了一个温和的要求,即幽灵值仅在局部二阶准确。然而,由于在来回纠正和补偿的应用,我们方法的最终精度是二阶的,这也可以放松CFL条件。我们通过一些数值示例证明了方法的有效性。

We propose a finite difference method to solve Maxwell's equations in time domain in the presence of a perfect electric conductor that impedes the propagations of electromagnetic waves. Our method is a modification of the existing approach by Zou and Liu [36], from a locally perturbed body-fitted grid to a uniform orthogonal one for complicated PEC objects. Similar to their work we extrapolate ghost point values by exploiting the level set function of the interface and the PDE-based extension technique, which allows us to circumvent scrutinizing local geometries of the interface. We stipulate a mild requirement on the accuracy of our extrapolation that the ghost values need only be locally second order accurate. Nevertheless the resulting accuracy of our method is second order thanks to the application of back and forth error correction and compensation, which also relaxes CFL conditions. We demonstrate the effectiveness of our approach with some numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源