论文标题
通过不确定的数据包络分析进行分类
Classifying with Uncertain Data Envelopment Analysis
论文作者
论文摘要
分类将实体组织到类别中,这些实体在类别中识别出相似性并辨别类别之间的差异,并且它们对支持分析的信息进行了有力分类。我们提出了一个新的分类方案,该方案前提是关于不完美数据的现实。我们的计算模型使用不确定的数据包络分析来定义分类与公平效率的接近性,这是分类类别中相似性的总体测量。我们的分类过程有两个压倒性的计算挑战,这些挑战是失去凸度和具有爆炸性的搜索空间。我们通过在接近度值上建立下限和上限来克服第一个,然后通过使用一阶算法搜索此范围。我们通过调整P-Median问题来启动我们的探索来克服第二个,然后使用迭代邻里搜索来最终确定分类。我们通过将道琼斯工业平均水平的30个股票分类为表现层,并将前列腺治疗分类为临床有效的类别。
Classifications organize entities into categories that identify similarities within a category and discern dissimilarities among categories, and they powerfully classify information in support of analysis. We propose a new classification scheme premised on the reality of imperfect data. Our computational model uses uncertain data envelopment analysis to define a classification's proximity to equitable efficiency, which is an aggregate measure of intra-similarity within a classification's categories. Our classification process has two overriding computational challenges, those being a loss of convexity and a combinatorially explosive search space. We overcome the first by establishing lower and upper bounds on the proximity value, and then by searching this range with a first-order algorithm. We overcome the second by adapting the p-median problem to initiate our exploration, and by then employing an iterative neighborhood search to finalize a classification. We conclude by classifying the thirty stocks in the Dow Jones Industrial average into performant tiers and by classifying prostate treatments into clinically effectual categories.