论文标题

量子近似优化算法的递归贪婪初始化,并确保改进

Recursive greedy initialization of the quantum approximate optimization algorithm with guaranteed improvement

论文作者

Sack, Stefan H., Medina, Raimel A., Kueng, Richard, Serbyn, Maksym

论文摘要

量子近似优化算法(QAOA)是一种变分量子算法,其中量子计算机实现由$ p $交替的统一运算符层组成的变异ansatz,并且使用经典计算机来优化变量参数。对于随机初始化,优化通常会导致局部最小值,性能较差,从而促使人们寻找QAOA变化参数的初始化策略。尽管存在许多启发式初始化,但对于$ p $的大型理解和绩效保证仍然存在。我们引入了QAOA的贪婪初始化,该初始化可以保证通过越来越多的层来提高性能。我们的主要结果是$ 2P+1 $过渡状态的分析结构 - 具有唯一负曲率方向的鞍点 - 对于$ p+1 $层,使用$ p $ p $ layers的当地最低QAOA。过渡状态连接到新的本地最小值,与$ p $层的最小值相比,可以保证降低能源。我们使用贪婪的程序来逐步导航,并通过递归应用我们的分析构造的递归应用而导致$ p $ p $ p $ p $。贪婪程序的性能与可用的初始化策略相匹配,同时提供了最小能量,以减少层的层$ p $。

The quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm, where a quantum computer implements a variational ansatz consisting of $p$ layers of alternating unitary operators and a classical computer is used to optimize the variational parameters. For a random initialization, the optimization typically leads to local minima with poor performance, motivating the search for initialization strategies of QAOA variational parameters. Although numerous heuristic initializations exist, an analytical understanding and performance guarantees for large $p$ remain evasive. We introduce a greedy initialization of QAOA which guarantees improving performance with an increasing number of layers. Our main result is an analytic construction of $2p+1$ transition states - saddle points with a unique negative curvature direction - for QAOA with $p+1$ layers that use the local minimum of QAOA with $p$ layers. Transition states connect to new local minima, which are guaranteed to lower the energy compared to the minimum found for $p$ layers. We use the GREEDY procedure to navigate the exponentially increasing with $p$ number of local minima resulting from the recursive application of our analytic construction. The performance of the GREEDY procedure matches available initialization strategies while providing a guarantee for the minimal energy to decrease with an increasing number of layers $p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源