论文标题
在链接预测上,针对知识基础图的半监督培训自我发项网络
Semi-supervised Training for Knowledge Base Graph Self-attention Networks on Link Prediction
论文作者
论文摘要
链接预测的任务旨在解决由于难以从现实世界中收集事实而引起的不完整知识的问题。基于GCN的模型由于其复杂性而广泛应用于解决链接预测问题,但基于GCN的模型在结构和培训过程中遇到了两个问题。 1)GCN层的转化方法在基于GCN的知识表示模型中变得越来越复杂; 2)由于知识图收集过程的不完整,标记为负样本中有许多未收集的真实事实。因此,本文研究了相邻节点的信息聚合系数(自我注意)的特征,并重新设计了GAT结构的自我注意力。同时,受到人类思维习惯的启发,我们在预训练的模型上设计了一种半监督的自训练方法。基准数据集FB15K-237和WN18RR上的实验结果表明,我们提出的自我发项机制和半监督的自我训练方法可以有效地提高链接预测任务的性能。例如,如果您查看FB15K-237,则建议的方法将@1的命中率提高约30%。
The task of link prediction aims to solve the problem of incomplete knowledge caused by the difficulty of collecting facts from the real world. GCNs-based models are widely applied to solve link prediction problems due to their sophistication, but GCNs-based models are suffering from two problems in the structure and training process. 1) The transformation methods of GCN layers become increasingly complex in GCN-based knowledge representation models; 2) Due to the incompleteness of the knowledge graph collection process, there are many uncollected true facts in the labeled negative samples. Therefore, this paper investigates the characteristic of the information aggregation coefficient (self-attention) of adjacent nodes and redesigns the self-attention mechanism of the GAT structure. Meanwhile, inspired by human thinking habits, we designed a semi-supervised self-training method over pre-trained models. Experimental results on the benchmark datasets FB15k-237 and WN18RR show that our proposed self-attention mechanism and semi-supervised self-training method can effectively improve the performance of the link prediction task. If you look at FB15k-237, for example, the proposed method improves Hits@1 by about 30%.