论文标题

部分可观测时空混沌系统的无模型预测

Dynamics of Fourier Modes in Torus Generative Adversarial Networks

论文作者

González-Prieto, Ángel, Mozo, Alberto, Talavera, Edgar, Gómez-Canaval, Sandra

论文摘要

生成对抗网络(GAN)是强大的机器学习模型,能够生成具有高分辨率的所需现象的完全合成样本。尽管他们取得了成功,但GAN的训练过程非常不稳定,通常有必要对网络实施几种附件启发式方法,以达到可接受的模型收敛性。在本文中,我们介绍了一种新颖的方法来分析生成对抗网络培训的收敛性和稳定性。为此,我们建议分解对手Min-Max游戏的目标功能,将定期gan定义为傅立叶系列。通过研究连续交替梯度下降算法的截短傅里叶序列的动力学,我们能够近似实际流量并识别GAN收敛的主要特征。通过研究$ 2 $ - 参数GAN的旨在产生未知指数分布的训练流,从经验上证实了这种方法。作为副产品,我们表明,甘恩的融合轨道是周期性轨道的小扰动,因此纳什象征是螺旋吸引子。从理论上讲,这证明了在gan中观察到的缓慢且不稳定的训练是合理的。

Generative Adversarial Networks (GANs) are powerful Machine Learning models capable of generating fully synthetic samples of a desired phenomenon with a high resolution. Despite their success, the training process of a GAN is highly unstable and typically it is necessary to implement several accessory heuristics to the networks to reach an acceptable convergence of the model. In this paper, we introduce a novel method to analyze the convergence and stability in the training of Generative Adversarial Networks. For this purpose, we propose to decompose the objective function of the adversary min-max game defining a periodic GAN into its Fourier series. By studying the dynamics of the truncated Fourier series for the continuous Alternating Gradient Descend algorithm, we are able to approximate the real flow and to identify the main features of the convergence of the GAN. This approach is confirmed empirically by studying the training flow in a $2$-parametric GAN aiming to generate an unknown exponential distribution. As byproduct, we show that convergent orbits in GANs are small perturbations of periodic orbits so the Nash equillibria are spiral attractors. This theoretically justifies the slow and unstable training observed in GANs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源