论文标题
使用张量列车对先验和后验稀有事件估计的张量列表进行深度重视采样
Deep importance sampling using tensor trains with application to a priori and a posteriori rare event estimation
论文作者
论文摘要
我们提出了一种非常重要的抽样方法,该方法适用于估计高维问题中罕见的事件概率。我们将一般重要性抽样问题中最佳重要性分布近似为在订单保留转换组成下的参考分布的推动力,其中每种转换都是由平方的张量训练训练 - 培训分解形成的。平方张量 - 训练分解提供了可扩展的ANSATZ,用于通过密度近似构建订单的高维转换。沿着一系列桥接密度沿着一系列桥接密度的序列移动的地图的组成的使用可以减轻直接近似浓缩密度函数的难度。为了计算对非规范概率分布的期望,我们设计了一个比率估计器,该比率估计器使用单独的重要性分布估算归一化常数,这再次通过张量训练格式的转换组成构建。与自称的重要性采样相比,这提供了更好的理论差异,因此为贝叶斯推论问题中罕见事件概率的有效计算打开了大门。关于受微分方程约束的问题的数值实验显示,计算复杂性几乎没有增加,事件概率将零,并允许对迄今为止对复杂,高维后密度的罕见事件概率的迄今无法获得的估计。
We propose a deep importance sampling method that is suitable for estimating rare event probabilities in high-dimensional problems. We approximate the optimal importance distribution in a general importance sampling problem as the pushforward of a reference distribution under a composition of order-preserving transformations, in which each transformation is formed by a squared tensor-train decomposition. The squared tensor-train decomposition provides a scalable ansatz for building order-preserving high-dimensional transformations via density approximations. The use of composition of maps moving along a sequence of bridging densities alleviates the difficulty of directly approximating concentrated density functions. To compute expectations over unnormalized probability distributions, we design a ratio estimator that estimates the normalizing constant using a separate importance distribution, again constructed via a composition of transformations in tensor-train format. This offers better theoretical variance reduction compared with self-normalized importance sampling, and thus opens the door to efficient computation of rare event probabilities in Bayesian inference problems. Numerical experiments on problems constrained by differential equations show little to no increase in the computational complexity with the event probability going to zero, and allow to compute hitherto unattainable estimates of rare event probabilities for complex, high-dimensional posterior densities.