论文标题

原子机器学习的平稳基础

A smooth basis for atomistic machine learning

论文作者

Bigi, Filippo, Huguenin-Dumittan, Kevin, Ceriotti, Michele, Manolopoulos, David E.

论文摘要

基于原子质位置的相关性的机器学习框架首先是对系统中每个原子附近其他原子密度的离散描述。对称考虑因素支持使用球形谐波扩大该密度的角度依赖性,但尚无明确的理由来选择一种径向基础而不是另一种径向基础。在这里,我们调查了laplacian特征值问题在感兴趣原子周围的球体中的解决方案。我们表明,这在球体内产生了给定尺寸的最平稳依据,而拉普拉斯本征态的张量产物也为扩展适当的超晶体中原子密度的任何高阶相关性提供了最平稳的可能基础。我们考虑了给定数据集的基础质量的几个无监督的指标,并表明Laplacian特征态的基础的性能比某些广泛使用的基础集要好得多,并且与数据驱动的基础具有竞争力,该基础具有数值优化每个度量的基础。在监督的机器学习测试中,我们发现拉普拉斯本征态的最佳功能平滑度会导致可比性或更好的性能,而不是从相似大小的数据驱动的基础上获得的,该大小已优化,以描述特定数据集的原子密度相关性。我们得出的结论是,基本函数的平滑度是成功的原子密度表示的关键,迄今为止,迄今为止却在很大程度上被忽略了。

Machine learning frameworks based on correlations of interatomic positions begin with a discretized description of the density of other atoms in the neighbourhood of each atom in the system. Symmetry considerations support the use of spherical harmonics to expand the angular dependence of this density, but there is as yet no clear rationale to choose one radial basis over another. Here we investigate the basis that results from the solution of the Laplacian eigenvalue problem within a sphere around the atom of interest. We show that this generates the smoothest possible basis of a given size within the sphere, and that a tensor product of Laplacian eigenstates also provides the smoothest possible basis for expanding any higher-order correlation of the atomic density within the appropriate hypersphere. We consider several unsupervised metrics of the quality of a basis for a given dataset, and show that the Laplacian eigenstate basis has a performance that is much better than some widely used basis sets and is competitive with data-driven bases that numerically optimize each metric. In supervised machine learning tests, we find that the optimal function smoothness of the Laplacian eigenstates leads to comparable or better performance than can be obtained from a data-driven basis of a similar size that has been optimized to describe the atom-density correlation for the specific dataset. We conclude that the smoothness of the basis functions is a key and hitherto largely overlooked aspect of successful atomic density representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源