论文标题
来自高阶部分微分方程的交叉数字
Intersection Numbers from Higher-order Partial Differential Equations
论文作者
论文摘要
我们通过$ n $ dimensions的Stokes'定理提出了一种评估扭曲的Meromoromormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormorthic $ n $ forms的方法。它基于$ n $ ther订单部分微分方程的解决方案以及对多元残基的评估。我们还提出了每个多元残基的贡献的代数表达。我们用数学和物理学的许多简单示例来说明我们的方法。
We propose a new method for the evaluation of intersection numbers for twisted meromorphic $n$-forms, through Stokes' theorem in $n$ dimensions. It is based on the solution of an $n$-th order partial differential equation and on the evaluation of multivariate residues. We also present an algebraic expression for the contribution from each multivariate residue. We illustrate our approach with a number of simple examples from mathematics and physics.