论文标题
双极锯齿形条纹中的拓扑边缘状态
Topological edge states in dipolar zig-zag stripes
论文作者
论文摘要
我们研究具有易于轴的点磁性偶极子堆叠的曲折ZAG链的磁通光谱。由于偶极相互作用和锯齿形链链单位细胞的两点基础引起的各向异性,在2D Zig-Zag晶格中产生了拓扑上非平底的少镁带。调整单位单元格中两个sublattice位点之间的距离会导致带触摸,这触发了切换导热率符号的Chern数量带数量的交换,以及锯齿形条带中边缘模式的运动感。我们表明,当将偶极相互作用的范围截断至第二个最近的邻居时,这些拓扑特征将生存。
We study the magnon spectrum of stacked zig-zag chains of point magnetic dipoles with an easy axis. The anisotropy due to the dipolar interactions and the two-point basis of the zig-zag chain unit cell combine to give rise to topologically non-trivial magnon bands in 2D zig-zag lattices. Adjusting the distance between the two sublattice sites in the unit cell causes a band touching, which triggers the exchange of the Chern numbers of volume bands switching the sign of the thermal conductivity and the sense of motion of edges modes in zig-zag stripes. We show that these topological features survive when the range of the dipolar interactions is truncated up to the second nearest neighbors.