论文标题

大图信号denoing deNoing in deplance in dinialial隐私

Large Graph Signal Denoising with Application to Differential Privacy

论文作者

Chedemail, Elie, de Loynes, Basile, Navarro, Fabien, Olivier, Baptiste

论文摘要

在过去的十年中,图上的信号处理已成为非常活跃的研究领域。具体来说,使用从图形上构建的框架(例如图上的小波)在统计或深度学习中的应用数量大大增加。我们特别考虑通过数据驱动的小波紧密框架方法在图表上进行信号的情况。这种自适应方法基于使用Stein的无偏风险估计校准的阈值,该阈值适合于紧密的表示。我们可以使用Chebyshev-Jackson多项式近似值将其扩展到大图,从而可以快速计算小波系数,而无需计算laplacian特征性组成。但是,紧密框架的过度本质将白噪声转化为相关的噪声。结果,转化噪声的协方差出现在确定的差异项中,因此需要计算和存储框架,这导致了大图的不切实际计算。为了估计这种协方差,我们基于零均值和单位方差随机变量的快速转换,制定和分析蒙特卡洛策略。这种新的数据驱动的denoisisy方法可以在差异隐私中发现自然应用。从真实和模拟数据的大小变化图上进行了全面的性能分析。

Over the last decade, signal processing on graphs has become a very active area of research. Specifically, the number of applications, for instance in statistical or deep learning, using frames built from graphs, such as wavelets on graphs, has increased significantly. We consider in particular the case of signal denoising on graphs via a data-driven wavelet tight frame methodology. This adaptive approach is based on a threshold calibrated using Stein's unbiased risk estimate adapted to a tight-frame representation. We make it scalable to large graphs using Chebyshev-Jackson polynomial approximations, which allow fast computation of the wavelet coefficients, without the need to compute the Laplacian eigendecomposition. However, the overcomplete nature of the tight-frame, transforms a white noise into a correlated one. As a result, the covariance of the transformed noise appears in the divergence term of the SURE, thus requiring the computation and storage of the frame, which leads to an impractical calculation for large graphs. To estimate such covariance, we develop and analyze a Monte-Carlo strategy, based on the fast transformation of zero mean and unit variance random variables. This new data-driven denoising methodology finds a natural application in differential privacy. A comprehensive performance analysis is carried out on graphs of varying size, from real and simulated data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源