论文标题

信德:中国信号交叉口处的无人机数据集

SIND: A Drone Dataset at Signalized Intersection in China

论文作者

Xu, Yanchao, Shao, Wenbo, Li, Jun, Yang, Kai, Wang, Weida, Huang, Hua, Lv, Chen, Wang, Hong

论文摘要

交叉路口是自动驾驶任务最具挑战性的场景之一。由于复杂性和随机性,在相交处的基本应用(例如行为建模,运动预测,安全验证等)在很大程度上取决于数据驱动的技术。因此,在交集中,对流量参与者(TPS)的轨迹数据集有很大的需求。当前,城市地区的大多数交叉口都配备了交通信号灯。但是,尚无用于信号交叉口的大规模,高质量,公开可用的轨迹数据集。因此,在本文中,在中国天津选择了典型的两相信号交叉点。此外,管道旨在构建一个信号交叉数据集(SIND),该数据集包含7个小时的记录,其中包括13,000多种TPS,具有7种类型。然后,记录了信德的交通违规行为。此外,也将信德与其他类似作品进行了比较。 SIND的特征可以概括如下:1)SIND提供了更全面的信息,包括交通灯,运动参数,高清(HD)地图等。2)TPS类别是多种多样的和特征性的,其中易受伤害的道路用户的比例(VRUS)最多62.6%3)最多可违反非计算机的多次交通光。我们认为,Sind将是现有数据集的有效补充,并可以促进有关自动驾驶的相关研究。该数据集可通过以下网上获得:https://github.com/sotif-avlab/sind

Intersection is one of the most challenging scenarios for autonomous driving tasks. Due to the complexity and stochasticity, essential applications (e.g., behavior modeling, motion prediction, safety validation, etc.) at intersections rely heavily on data-driven techniques. Thus, there is an intense demand for trajectory datasets of traffic participants (TPs) in intersections. Currently, most intersections in urban areas are equipped with traffic lights. However, there is not yet a large-scale, high-quality, publicly available trajectory dataset for signalized intersections. Therefore, in this paper, a typical two-phase signalized intersection is selected in Tianjin, China. Besides, a pipeline is designed to construct a Signalized INtersection Dataset (SIND), which contains 7 hours of recording including over 13,000 TPs with 7 types. Then, the behaviors of traffic light violations in SIND are recorded. Furthermore, the SIND is also compared with other similar works. The features of the SIND can be summarized as follows: 1) SIND provides more comprehensive information, including traffic light states, motion parameters, High Definition (HD) map, etc. 2) The category of TPs is diverse and characteristic, where the proportion of vulnerable road users (VRUs) is up to 62.6% 3) Multiple traffic light violations of non-motor vehicles are shown. We believe that SIND would be an effective supplement to existing datasets and can promote related research on autonomous driving.The dataset is available online via: https://github.com/SOTIF-AVLab/SinD

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源