论文标题

安全性和共同安全语言的一阶逻辑表征

A first-order logic characterization of safety and co-safety languages

论文作者

Cimatti, Alessandro, Geatti, Luca, Gigante, Nicola, Montanari, Angelo, Tonetta, Stefano

论文摘要

线性时间逻辑(LTL)是最流行的时间逻辑之一,它在计算机科学的各种分支中发挥作用。在其广泛使用的各种原因中,它具有强大的基础特性:LTL等同于无反欧米茄 - 自动,与无星际欧米茄的表达式,以及(通过Kamp的定理)与线性阶的一阶理论(FO-TLO)(FO-TLO)。安全性和共同安全性语言,其中有限的前缀足以确定单词是否不属于或属于该语言,在降低LTL的模型检查和反应性合成等问题的复杂性方面起着至关重要的作用。 Safetyltl(分别,Cosafetyltl)是LTL的片段,其中只允许通用(分别存在,存在)时间方式,仅识别安全性(分别,共同安全)语言。本文的主要贡献是引入了fo-tlo的片段,即Safetyfo及其双Cosafetyfo,它们在LTL可定义的安全性和共同安全语言方面表现出色。我们证明它们分别表征了Safetyltl和Cosafetyltl,这是加入Kamp定理的结果,并更清晰地看出了(片段)LTL的(片段)在一阶语言方面。此外,它提供了直接,紧凑且独立的证据,表明LTL中可以定义的任何安全语言在Safetyltl中也可以定义。作为副产品,我们对Safetyltl的弱明天运营商的表达能力获得了一些有趣的结果,该副产品对有限和无限单词进行了解释。此外,我们证明,当用有限的单词解释时,Safetyltl(cosafetyltl)没有明天(分别,弱的明天)操作员捕获了LTL的安全性(分别,共同安全)片段,而不是有限词。

Linear Temporal Logic (LTL) is one of the most popular temporal logics, that comes into play in a variety of branches of computer science. Among the various reasons of its widespread use there are its strong foundational properties: LTL is equivalent to counter-free omega-automata, to star-free omega-regular expressions, and (by Kamp's theorem) to the First-Order Theory of Linear Orders (FO-TLO). Safety and co-safety languages, where a finite prefix suffices to establish whether a word does not belong or belongs to the language, respectively, play a crucial role in lowering the complexity of problems like model checking and reactive synthesis for LTL. SafetyLTL (resp., coSafetyLTL) is a fragment of LTL where only universal (resp., existential) temporal modalities are allowed, that recognises safety (resp., co-safety) languages only. The main contribution of this paper is the introduction of a fragment of FO-TLO, called SafetyFO, and of its dual coSafetyFO, which are expressively complete with respect to the LTL-definable safety and co-safety languages. We prove that they exactly characterize SafetyLTL and coSafetyLTL, respectively, a result that joins Kamp's theorem, and provides a clearer view of the characterization of (fragments of) LTL in terms of first-order languages. In addition, it gives a direct, compact, and self-contained proof that any safety language definable in LTL is definable in SafetyLTL as well. As a by-product, we obtain some interesting results on the expressive power of the weak tomorrow operator of SafetyLTL, interpreted over finite and infinite words. Moreover, we prove that, when interpreted over finite words, SafetyLTL (resp. coSafetyLTL) devoid of the tomorrow (resp., weak tomorrow) operator captures the safety (resp., co-safety) fragment of LTL over finite words.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源