论文标题

弱搭配回归方法:快速揭示了来自高维骨料数据的隐藏随机动力学

Weak Collocation Regression method: fast reveal hidden stochastic dynamics from high-dimensional aggregate data

论文作者

Lu, Liwei, Zeng, Zhijun, Jiang, Yan, Zhu, Yi, Hu, Pipi

论文摘要

从随机数据中揭示隐藏的动态是一个具有挑战性的问题,因为随机性参与了数据的发展。在许多情况下不存在随机数据的轨迹时,问题就变得非常复杂。在这里,我们提出了一种方法,可以根据fokker-planck(FP)方程的弱形式有效地对随机数据的动力学进行建模,该方程控制了布朗过程中密度函数的演变。将高斯函数作为测试函数以FP方程的弱形式为测试函数,我们将衍生物传递到高斯函数,从而通过数据的期望值来近似弱形式。使用未知术语的字典表示形式,可以通过回归构建线性系统,然后求解数据的未知动力学。因此,我们以弱搭配回归(WCR)方法为其三个关键组成部分命名该方法:弱形式,高斯内核的套件和回归。数值实验表明我们的方法是灵活而快速的,这在多维问题中揭示了几秒钟内的动态,并且可以很容易地扩展到高维数据,例如20个维度。 WCR还可以正确地识别具有可变依赖性扩散和耦合漂移的复杂任务的隐藏动力学,并且性能是稳健的,在添加噪声的情况下,在情况下达到了很高的精度。

Revealing hidden dynamics from the stochastic data is a challenging problem as randomness takes part in the evolution of the data. The problem becomes exceedingly complex when the trajectories of the stochastic data are absent in many scenarios. Here we present an approach to effectively modeling the dynamics of the stochastic data without trajectories based on the weak form of the Fokker-Planck (FP) equation, which governs the evolution of the density function in the Brownian process. Taking the collocations of Gaussian functions as the test functions in the weak form of the FP equation, we transfer the derivatives to the Gaussian functions and thus approximate the weak form by the expectational sum of the data. With a dictionary representation of the unknown terms, a linear system is built and then solved by the regression, revealing the unknown dynamics of the data. Hence, we name the method with the Weak Collocation Regression (WCR) method for its three key components: weak form, collocation of Gaussian kernels, and regression. The numerical experiments show that our method is flexible and fast, which reveals the dynamics within seconds in multi-dimensional problems and can be easily extended to high-dimensional data such as 20 dimensions. WCR can also correctly identify the hidden dynamics of the complex tasks with variable-dependent diffusion and coupled drift, and the performance is robust, achieving high accuracy in the case with noise added.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源