论文标题

一种低成本交替投影方法,用于连续配方凸和基数约束优化

A low-cost alternating projection approach for a continuous formulation of convex and cardinality constrained optimization

论文作者

Krejić, Nataša, Krulikovski, Evelin H. M., Raydan, Marcos

论文摘要

我们考虑凸的限制优化问题,其中还包括基数约束。一般而言,基因限制的优化问题是困难的数学程序,通常通过离散优化的全局技术来解决。我们假设由凸约限制定义的区域可以写成有限的凸组集合的相交,因此将其投影到每个一个(例如,盒子,超级平面或半空间)上很容易且廉价地进行。 利用最近开发的持续重新重新制定,它放松了基数限制,我们提出了一种专门的惩罚梯度投影方案,并结合了交替的投影思想来解决这些问题。为了说明联合计划,我们专注于标准的均值差异投资组合优化问题,我们只能投资于预先建立的有限资产。 对于这些投资组合问题,我们对基数限制的问题提出了一项数值研究,该研究对涉及主要股票市场的现实世界资本市场指数的各种数据集进行了数字研究。在这些数据集上,我们说明了提出的方案的计算性能,以生成有限数量允许资产的不同值的有效边界。

We consider convex constrained optimization problems that also include a cardinality constraint. In general, optimization problems with cardinality constraints are difficult mathematical programs which are usually solved by global techniques from discrete optimization. We assume that the region defined by the convex constraints can be written as the intersection of a finite collection of convex sets, such that it is easy and inexpensive to project onto each one of them (e.g., boxes, hyper-planes, or half-spaces). Taking advantage of a recently developed continuous reformulation that relaxes the cardinality constraint, we propose a specialized penalty gradient projection scheme combined with alternating projection ideas to solve these problems. To illustrate the combined scheme, we focus on the standard mean-variance portfolio optimization problem for which we can only invest in a preestablished limited number of assets. For these portfolio problems with cardinality constraints we present a numerical study on a variety of data sets involving real-world capital market indices from major stock markets. On those data sets we illustrate the computational performance of the proposed scheme to produce the effective frontiers for different values of the limited number of allowed assets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源