论文标题
DC-MRTA:在复杂环境中分散的多机器人任务分配和导航
DC-MRTA: Decentralized Multi-Robot Task Allocation and Navigation in Complex Environments
论文作者
论文摘要
我们为仓库环境中的移动机器人提供了一种新颖的增强学习(RL)任务分配和分散的导航算法。我们的方法是针对各种机器人执行各种接送和交付任务的方案而设计的。我们考虑了联合分散任务分配和导航的问题,并提出了解决该问题的两层方法。在更高级别,我们通过根据马尔可夫决策过程制定任务并选择适当的奖励来最大程度地减少总旅行延迟(TTD)来解决任务分配。在较低级别,我们使用基于ORCA的分散导航方案,使每个机器人都能独立执行这些任务,并避免与其他机器人和动态障碍物发生碰撞。我们通过定义较高级别的奖励作为较低级别导航算法的反馈来结合这些下层和上层。我们在具有大量代理商的复杂仓库布局中进行广泛的评估,并根据近视拾取距离距离最小化和基于遗憾的任务选择,突出了对最先进算法的好处。我们观察到任务完成时间的改善高达14%,并且在计算机器人的无碰撞轨迹方面提高了40%。
We present a novel reinforcement learning (RL) based task allocation and decentralized navigation algorithm for mobile robots in warehouse environments. Our approach is designed for scenarios in which multiple robots are used to perform various pick up and delivery tasks. We consider the problem of joint decentralized task allocation and navigation and present a two level approach to solve it. At the higher level, we solve the task allocation by formulating it in terms of Markov Decision Processes and choosing the appropriate rewards to minimize the Total Travel Delay (TTD). At the lower level, we use a decentralized navigation scheme based on ORCA that enables each robot to perform these tasks in an independent manner, and avoid collisions with other robots and dynamic obstacles. We combine these lower and upper levels by defining rewards for the higher level as the feedback from the lower level navigation algorithm. We perform extensive evaluation in complex warehouse layouts with large number of agents and highlight the benefits over state-of-the-art algorithms based on myopic pickup distance minimization and regret-based task selection. We observe improvement up to 14% in terms of task completion time and up-to 40% improvement in terms of computing collision-free trajectories for the robots.