论文标题
构建用于张量网络量子电路模拟的最佳收缩树
Constructing Optimal Contraction Trees for Tensor Network Quantum Circuit Simulation
论文作者
论文摘要
基于张量的量子电路仿真中的关键问题之一是构造收缩树,该树可最大程度地减少模拟成本,其中成本可以在操作数量中表示,作为模拟运行时间的代理。在各种应用领域都出现了同样的问题,例如组合科学计算,概率图形模型中的边缘化以及解决约束满意度问题。在本文中,我们将该问题的计算严重部分减少到了线性排序之一,并证明如何利用该领域的现有方法在相同的运行时间内实现比现有最先进的方法更好的数量级。为此,我们引入了一种新型的多项式时间算法,用于从给定的顺序构造最佳收缩树。此外,我们引入了一个快速,高质量的线性订购求解器,并证明了其作为启发式的启发式,用于为收缩树提供订购。最后,我们将求解器与在量子电路模拟中构建收缩树构造收缩树的竞争方法,这些方法在随机生成的量子近似优化算法最大切割电路中的集合中,并表明我们的方法在大多数经过测试的量子电路上取得了卓越的结果。 可重复性:我们的源代码和数据可在https://github.com/cameton/hpec2022_contractiontrees上找到。
One of the key problems in tensor network based quantum circuit simulation is the construction of a contraction tree which minimizes the cost of the simulation, where the cost can be expressed in the number of operations as a proxy for the simulation running time. This same problem arises in a variety of application areas, such as combinatorial scientific computing, marginalization in probabilistic graphical models, and solving constraint satisfaction problems. In this paper, we reduce the computationally hard portion of this problem to one of graph linear ordering, and demonstrate how existing approaches in this area can be utilized to achieve results up to several orders of magnitude better than existing state of the art methods for the same running time. To do so, we introduce a novel polynomial time algorithm for constructing an optimal contraction tree from a given order. Furthermore, we introduce a fast and high quality linear ordering solver, and demonstrate its applicability as a heuristic for providing orderings for contraction trees. Finally, we compare our solver with competing methods for constructing contraction trees in quantum circuit simulation on a collection of randomly generated Quantum Approximate Optimization Algorithm Max Cut circuits and show that our method achieves superior results on a majority of tested quantum circuits. Reproducibility: Our source code and data are available at https://github.com/cameton/HPEC2022_ContractionTrees.