论文标题

基于矩阵的基于矩阵的图形合并与自适应数量的簇

Grouping-matrix based Graph Pooling with Adaptive Number of Clusters

论文作者

Ko, Sung Moon, Cho, Sungjun, Jeong, Dae-Woong, Han, Sehui, Lee, Moontae, Lee, Honglak

论文摘要

图形池是用于编码图中层次结构的关键操作。大多数现有的图形池方法将问题作为节点聚类任务提出,从而有效地捕获图形拓扑。常规方法要求用户指定适当数量的簇作为超参数,然后假设所有输入图共享相同数量的簇。但是,在簇数可以变化的归纳设置中,该模型应能够在其池层中表示这种变化,以学习合适的簇。因此,我们提出了GMPool,这是一种新型可区分的图形池体系结构,该体系结构会根据输入数据自动确定适当数量的簇数。主要直觉涉及定义为合并运算符的二次形式的分组矩阵,该矩阵诱导了节点成对组合的二进制分类概率的使用。 GMPool首先计算分组矩阵,然后将其分解。对分子财产预测任务的广泛评估表明,我们的方法表现优于常规方法。

Graph pooling is a crucial operation for encoding hierarchical structures within graphs. Most existing graph pooling approaches formulate the problem as a node clustering task which effectively captures the graph topology. Conventional methods ask users to specify an appropriate number of clusters as a hyperparameter, then assume that all input graphs share the same number of clusters. In inductive settings where the number of clusters can vary, however, the model should be able to represent this variation in its pooling layers in order to learn suitable clusters. Thus we propose GMPool, a novel differentiable graph pooling architecture that automatically determines the appropriate number of clusters based on the input data. The main intuition involves a grouping matrix defined as a quadratic form of the pooling operator, which induces use of binary classification probabilities of pairwise combinations of nodes. GMPool obtains the pooling operator by first computing the grouping matrix, then decomposing it. Extensive evaluations on molecular property prediction tasks demonstrate that our method outperforms conventional methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源