论文标题
随机张量网络中的新兴散装量规场
Emergent bulk gauge field in random tensor networks
论文作者
论文摘要
随机张量网络状态是用于全息二元性的玩具模型,它们具有由图几何形状确定的纠缠属性。在本文中,我们提出了一个随机张量网络状态的概括,该态描述了保留给定的全局对称性的态度的集合。我们表明,该状态家族的Renyi熵可以通过量子极端表面公式来描述,并校正由大量规程波函数确定的区域定期术语。这为全息二元性中边界全局对称性和散装量规对称性之间的对应关系提供了一个玩具模型。我们讨论了散装块状和狭窄阶段的边界物理后果。
Random tensor network states are toy models for holographic duality, which have entanglement properties determined by graph geometry. In this paper, we propose a generalization of the random tensor network states which describe an ensemble of states preserving a given global symmetry. We show that Renyi entropy for this family of states can be described by a quantum extremal surface formula, with corrections to the area law term determined by a bulk gauge theory wavefunction. This provides a toy model of the correspondence between boundary global symmetry and bulk gauge symmetry in holographic duality. We discuss the boundary physical consequences of the bulk deconfined and confined phases.