论文标题

pptimal顶点耐故障跨度在§时间:顺序,分布和平行

Õptimal Vertex Fault-Tolerant Spanners in Õptimal Time: Sequential, Distributed and Parallel

论文作者

Parter, Merav

论文摘要

我们(几乎)解决了具有最佳稀疏性(到多毛因子)的计算顶点耐受耐受(VFT)跨度的时间复杂性。在存在顶点故障的情况下,VFT跨度是稀疏的子图,可保留距离信息,最多可延伸。这些结构是由[Chechik等,Stoc 2009]引入的,此后引起了很多关注。我们提供用于计算任何$ n $ vertex $ m $ - edge图的算法,用于计算几乎最佳的$ f $ -vft跨度,并在几种计算模型中具有接近最佳的运行时间: - 一种随机顺序算法,其运行时为$ \ widetilde {o}(m)$(即,故障数$ f $)。最新的时间限制为$ \ widetilde {o}(f^{1-1/k} \ cdot n^{2+1/k}+f^2 m)$ by [Bodwin,Dinitz和Robelle,Sode 2021]。 - $ \ widetilde {o}(1)$ roughs的分布式拥堵算法。改进[Dinitz and Robelle,PODC 2020],在$ \ widetilde {o}(f^{2})$ rounds中获得了近距离稀疏的ft跨度。 - 带有$ \ widetilde {o}(m)$ work和$ \ widetilde {o}(1)$ depth的婴儿车(CRCW)算法。 [Dinitz和Krauthgamer,PODC 2011]隐含的先前界限使用了$ \ wideTilde {o}(f^3m)$ Work和$ \ wideTilde {o}(o}(f^3)$ depth。 立即推论提供了使用Polylogarithmic Depth和接近线性工作的第一个几乎最佳的婴儿车算法,用于计算几乎最佳的$λ$ - \ emph {vertex}连接证书。这改善了[Karger and Motwani,stoc'93]的$ \ widetilde {o}(1)$ depth和$ o(λm)$的最新并行边界。

We (nearly) settle the time complexity for computing vertex fault-tolerant (VFT) spanners with optimal sparsity (up to polylogarithmic factors). VFT spanners are sparse subgraphs that preserve distance information, up to a small multiplicative stretch, in the presence of vertex failures. These structures were introduced by [Chechik et al., STOC 2009] and have received a lot of attention since then. We provide algorithms for computing nearly optimal $f$-VFT spanners for any $n$-vertex $m$-edge graph, with near optimal running time in several computational models: - A randomized sequential algorithm with a runtime of $\widetilde{O}(m)$ (i.e., independent in the number of faults $f$). The state-of-the-art time bound is $\widetilde{O}(f^{1-1/k}\cdot n^{2+1/k}+f^2 m)$ by [Bodwin, Dinitz and Robelle, SODA 2021]. - A distributed congest algorithm of $\widetilde{O}(1)$ rounds. Improving upon [Dinitz and Robelle, PODC 2020] that obtained FT spanners with near-optimal sparsity in $\widetilde{O}(f^{2})$ rounds. - A PRAM (CRCW) algorithm with $\widetilde{O}(m)$ work and $\widetilde{O}(1)$ depth. Prior bounds implied by [Dinitz and Krauthgamer, PODC 2011] obtained sub-optimal FT spanners using $\widetilde{O}(f^3m)$ work and $\widetilde{O}(f^3)$ depth. An immediate corollary provides the first nearly-optimal PRAM algorithm for computing nearly optimal $λ$-\emph{vertex} connectivity certificates using polylogarithmic depth and near-linear work. This improves the state-of-the-art parallel bounds of $\widetilde{O}(1)$ depth and $O(λm)$ work, by [Karger and Motwani, STOC'93].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源