论文标题

关于紧凑的生物医学变压器的有效性

On the Effectiveness of Compact Biomedical Transformers

论文作者

Rohanian, Omid, Nouriborji, Mohammadmahdi, Kouchaki, Samaneh, Clifton, David A.

论文摘要

在Biobert等生物医学语料库中预先培训的语言模型最近在下游生物医学任务上显示出令人鼓舞的结果。另一方面,由于嵌入尺寸,隐藏的尺寸和层数等因素,许多现有的预训练模型在资源密集型和计算上都是沉重的。自然语言处理(NLP)社区已经制定了许多策略,以压缩这些模型,利用修剪,定量和知识蒸馏等技术,从而导致模型更快,较小且随后更易于在实践中使用。同样,在本文中,我们介绍了六种轻量级模型,即Biodistilbert,Biotinybert,Biomobilebert,Biomobilebert,Distilbiobert,Tinybiobert和Compactbiobert,通过在PubMed DataSet上通过掩护的语言模型(MLMMLM)在PubMed DataSet上(MASKED MASKED语言)(MASKED MASKED)的目标(MLM MLM),这些模型可通过知识蒸馏获得。我们在三个生物医学任务上评估了所有模型,并将它们与Biobert-V1.1进行比较,以创建有效的轻量级模型,并与较大的对应物相同。所有模型将在我们的HuggingFace配置文件上在https://huggingface.co/nlpie上公开可用,用于运行实验的代码将在https://github.com/nlpie-comearch/compact-compact-biomedical-transformers上获得。

Language models pre-trained on biomedical corpora, such as BioBERT, have recently shown promising results on downstream biomedical tasks. Many existing pre-trained models, on the other hand, are resource-intensive and computationally heavy owing to factors such as embedding size, hidden dimension, and number of layers. The natural language processing (NLP) community has developed numerous strategies to compress these models utilising techniques such as pruning, quantisation, and knowledge distillation, resulting in models that are considerably faster, smaller, and subsequently easier to use in practice. By the same token, in this paper we introduce six lightweight models, namely, BioDistilBERT, BioTinyBERT, BioMobileBERT, DistilBioBERT, TinyBioBERT, and CompactBioBERT which are obtained either by knowledge distillation from a biomedical teacher or continual learning on the Pubmed dataset via the Masked Language Modelling (MLM) objective. We evaluate all of our models on three biomedical tasks and compare them with BioBERT-v1.1 to create efficient lightweight models that perform on par with their larger counterparts. All the models will be publicly available on our Huggingface profile at https://huggingface.co/nlpie and the codes used to run the experiments will be available at https://github.com/nlpie-research/Compact-Biomedical-Transformers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源