论文标题
一般数量的口味
NNLO Positivity Bounds on ChPT for a General Number of Flavours
论文作者
论文摘要
我们提出阳性界限,这些范围源自分析性,单位性和交叉对称性的原理,这些原理限制了手性扰动理论的低能代数。使用幅度的第二和更高衍生物,对具有相等的介子质量的2、3或更多口味产生边界。我们通过使用最通用的同胞组合(或更高的流风)以及通过分析整合幅度的低能范围来增强边界。此外,我们提出了一个强大而通用的数学框架,用于有效地管理大量阳性界限。
We present positivity bounds, derived from the principles of analyticity, unitarity and crossing symmetry, that constrain the low-energy constants of chiral perturbation theory. Bounds are produced for 2, 3 or more flavours with equal meson masses, up to and including next-to-next-to-leading order (NNLO), using the second and higher derivatives of the amplitude. We enhance the bounds by using the most general isospin combinations posible (or higher-flavour counterparts thereof) and by analytically integrating the low-energy range of the amplitude. In addition, we present a powerful and general mathematical framework for efficiently managing large numbers of positivity bounds.