论文标题

飞机系统模拟的物理引导的对抗机学习

Physics-Guided Adversarial Machine Learning for Aircraft Systems Simulation

论文作者

Braiek, Houssem Ben, Reid, Thomas, Khomh, Foutse

论文摘要

在飞机系统绩效评估的背景下,深度学习技术可以从实验测量中快速推断模型,其详细的系统知识比基于物理基于物理的建模所需的详细知识。但是,这种廉价的模型开发也带来了有关模型可信度的新挑战。这项工作提出了一种新颖的方法,物理学引导的对抗机学习(ML),可提高对模型物理一致性的信心。首先,该方法执行了物理引导的对抗测试阶段,以搜索测试输入,以显示行为系统不一致,同时仍落在可预见的操作条件范围内。然后,它进行了物理知识的对抗训练,以通过迭代降低先前未经证实的反例的不良输出偏差来教授模型与系统相关的物理领域预见。对两个飞机系统性能模型的经验评估显示了我们对抗性ML方法在揭示这两种模型的身体不一致以及改善其倾向与物理领域知识一致的倾向方面的有效性。

In the context of aircraft system performance assessment, deep learning technologies allow to quickly infer models from experimental measurements, with less detailed system knowledge than usually required by physics-based modeling. However, this inexpensive model development also comes with new challenges regarding model trustworthiness. This work presents a novel approach, physics-guided adversarial machine learning (ML), that improves the confidence over the physics consistency of the model. The approach performs, first, a physics-guided adversarial testing phase to search for test inputs revealing behavioral system inconsistencies, while still falling within the range of foreseeable operational conditions. Then, it proceeds with physics-informed adversarial training to teach the model the system-related physics domain foreknowledge through iteratively reducing the unwanted output deviations on the previously-uncovered counterexamples. Empirical evaluation on two aircraft system performance models shows the effectiveness of our adversarial ML approach in exposing physical inconsistencies of both models and in improving their propensity to be consistent with physics domain knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源