论文标题
公司知道我们保留:“三合会影响”作为社会关系兼容的代理
Known by the company we keep: `Triadic influence' as a proxy for compatibility in social relationships
论文作者
论文摘要
社会互动网络是建立文明的基材。通常,我们与我们喜欢的人建立新的纽带,或者认为通过第三方的干预措施损害了我们的关系。尽管它们的重要性和这些过程对我们的生活产生的巨大影响,但对它们的定量科学理解仍处于起步阶段,这主要是由于很难收集包括个人属性在内的大量社交网络数据集。在这项工作中,我们对13所学校的真实社交网络进行了彻底的研究,其中3,000多名学生和60,000名宣布为正面关系和负面关系,包括对所有学生的个人特征的测试。我们引入了一个度量标准 - “三合会影响”,该指标衡量了最近的邻居在其接触关系中的影响。我们使用神经网络来预测关系,并根据他们的个人属性或三合会的影响来提取两个学生是朋友或敌人的可能性。或者,我们可以使用网络结构的高维嵌入来预测关系。值得注意的是,三合会影响(一个简单的一维度量)在预测两个学生之间的关系方面取得了最高的准确性。我们假设从神经网络中提取的概率 - 三合会影响的功能和学生的个性 - 控制真实社交网络的演变,为这些系统的定量研究开辟了新的途径。
Networks of social interactions are the substrate upon which civilizations are built. Often, we create new bonds with people that we like or feel that our relationships are damaged through the intervention of third parties. Despite their importance and the huge impact that these processes have in our lives, quantitative scientific understanding of them is still in its infancy, mainly due to the difficulty of collecting large datasets of social networks including individual attributes. In this work, we present a thorough study of real social networks of 13 schools, with more than 3,000 students and 60,000 declared positive and negative relations, including tests for personal traits of all the students. We introduce a metric -- the `triadic influence' -- that measures the influence of nearest-neighbors in the relationships of their contacts. We use neural networks to predict the relationships and to extract the probability that two students are friends or enemies depending on their personal attributes or the triadic influence. We alternatively use a high-dimensional embedding of the network structure to also predict the relationships. Remarkably, the triadic influence (a simple one-dimensional metric) achieves the highest accuracy at predicting the relationship between two students. We postulate that the probabilities extracted from the neural networks -- functions of the triadic influence and the personalities of the students -- control the evolution of real social networks, opening a new avenue for the quantitative study of these systems.