论文标题

我刚刚听到了什么?使用神经网络检测成人视频中的色情声音

What Did I Just Hear? Detecting Pornographic Sounds in Adult Videos Using Neural Networks

论文作者

Lovenia, Holy, Lestari, Dessi Puji, Frieske, Rita

论文摘要

基于音频的色情检测可以通过利用不同的光谱特征来实现有效的成人内容过滤。为了改善它,我们根据不同的神经体系结构和声学特征探索色情声音建模。我们发现,经过登录MEL频谱图训练的CNN可以在色情800数据集上实现最佳性能。我们的实验结果还表明,对数MEL频谱图可以为模型识别色情声音提供更好的表示。最后,为了对整个音频波形进行分类,而不是段,我们采用了投票段到原告技术,从而产生最佳的音频级检测结果。

Audio-based pornographic detection enables efficient adult content filtering without sacrificing performance by exploiting distinct spectral characteristics. To improve it, we explore pornographic sound modeling based on different neural architectures and acoustic features. We find that CNN trained on log mel spectrogram achieves the best performance on Pornography-800 dataset. Our experiment results also show that log mel spectrogram allows better representations for the models to recognize pornographic sounds. Finally, to classify whole audio waveforms rather than segments, we employ voting segment-to-audio technique that yields the best audio-level detection results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源