论文标题

增强可转移目标攻击的自我宇宙性

Enhancing the Self-Universality for Transferable Targeted Attacks

论文作者

Wei, Zhipeng, Chen, Jingjing, Wu, Zuxuan, Jiang, Yu-Gang

论文摘要

在本文中,我们提出了一种基于转移的新型目标攻击方法,该方法可以优化对抗性扰动,而无需为训练数据辅助网络进行任何额外的培训工作。我们的新攻击方法是基于这样的观察结果,即高度普遍的对抗扰动倾向于对目标攻击更可转移。因此,我们建议将扰动对一个图像中的不同地方区域不可知,我们称之为自我助理。与其优化不同图像上的扰动,不如优化不同的区域以实现自我,可以摆脱使用额外的数据。具体而言,我们引入了特征相似性损失,该功能相似性损失通过最大程度地提高对抗性扰动的全球图像和随机裁剪本地区域之间的特征相似性来鼓励学习的扰动是普遍的。由于特征相似性损失,我们的方法使对抗性扰动的特征比良性图像的特征更为主导,从而提高了目标可传递性。我们将提议的攻击方法称为自我攻击(SU)攻击。广泛的实验表明,SU可以实现基于转移的目标攻击的高成功率。在与Imagenet兼容的数据集上,与现有最新方法相比,SU的提高为12 \%。代码可从https://github.com/zhipeng-wei/self-universality获得。

In this paper, we propose a novel transfer-based targeted attack method that optimizes the adversarial perturbations without any extra training efforts for auxiliary networks on training data. Our new attack method is proposed based on the observation that highly universal adversarial perturbations tend to be more transferable for targeted attacks. Therefore, we propose to make the perturbation to be agnostic to different local regions within one image, which we called as self-universality. Instead of optimizing the perturbations on different images, optimizing on different regions to achieve self-universality can get rid of using extra data. Specifically, we introduce a feature similarity loss that encourages the learned perturbations to be universal by maximizing the feature similarity between adversarial perturbed global images and randomly cropped local regions. With the feature similarity loss, our method makes the features from adversarial perturbations to be more dominant than that of benign images, hence improving targeted transferability. We name the proposed attack method as Self-Universality (SU) attack. Extensive experiments demonstrate that SU can achieve high success rates for transfer-based targeted attacks. On ImageNet-compatible dataset, SU yields an improvement of 12\% compared with existing state-of-the-art methods. Code is available at https://github.com/zhipeng-wei/Self-Universality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源