论文标题

量子稀疏编码

Quantum Sparse Coding

论文作者

Romano, Yaniv, Primack, Harel, Vaknin, Talya, Meirzada, Idan, Karpas, Ilan, Furman, Dov, Tradonsky, Chene, Shlomi, Ruti Ben

论文摘要

任何稀疏编码方法的最终目标是从几个嘈杂的线性测量值(一个未知的稀疏向量)中准确恢复。不幸的是,这个估计问题通常是NP-HARD,因此始终以近似方法(例如Lasso或正交匹配的追踪)来接近它,从而使准确性以较小的计算复杂性进行了折算。在本文中,我们开发了一种量子启发的算法,用于稀疏编码,前提是,与经典近似方法相比,量子计算机和ISING机器的出现可能会导致更准确的估计。为此,我们将最一般的稀疏编码问题作为二次不受约束的二进制优化(QUBO)任务,可以使用量子技术有效地最小化。为了在旋转数量(空间复杂性)方面也有效地得出QUBO模型,我们将分析分为三种不同的情况。这些是由表达潜在的稀疏向量所需的位数来定义的:二进制,2位和一般的固定点表示。我们使用有关Lightsolver量子启发的数字平台的模拟数据进行数值实验,以验证我们的QUBO公式的正确性,并证明其优于基线方法的优势。

The ultimate goal of any sparse coding method is to accurately recover from a few noisy linear measurements, an unknown sparse vector. Unfortunately, this estimation problem is NP-hard in general, and it is therefore always approached with an approximation method, such as lasso or orthogonal matching pursuit, thus trading off accuracy for less computational complexity. In this paper, we develop a quantum-inspired algorithm for sparse coding, with the premise that the emergence of quantum computers and Ising machines can potentially lead to more accurate estimations compared to classical approximation methods. To this end, we formulate the most general sparse coding problem as a quadratic unconstrained binary optimization (QUBO) task, which can be efficiently minimized using quantum technology. To derive at a QUBO model that is also efficient in terms of the number of spins (space complexity), we separate our analysis into three different scenarios. These are defined by the number of bits required to express the underlying sparse vector: binary, 2-bit, and a general fixed-point representation. We conduct numerical experiments with simulated data on LightSolver's quantum-inspired digital platform to verify the correctness of our QUBO formulation and to demonstrate its advantage over baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源