论文标题

使用环境声音和航拍照片的音景印象的预测方法

Prediction method of Soundscape Impressions using Environmental Sounds and Aerial Photographs

论文作者

Ono, Yusuke, Hara, Sunao, Abe, Masanobu

论文摘要

我们研究了一种基于声音环境的印象来量化城市特征的方法。城市特征的量化将有利于政府政策计划,旅游项目等。在这项研究中,我们尝试使用云敏感方法收集的声音数据来预测两种音景印象,含义令人愉悦和多重性。收集的声音包括使用全球定位系统记录位置的元信息。此外,通过使用瑞典音景质量协议定义的评估,将声学印象和音源特征分别分别为云传感声音,从而评估声学环境的质量。预测模型是使用带有多层感知器的深神经网络构建的,用于10秒的声音及其位置的航拍照片。声学特征包括每秒每秒的等效噪声水平和八度音频过滤器的输出,并在10〜s中的统计数据。使用Resnet-50和自动编码器体系结构从航拍照片中提取图像功能。我们执行比较实验以证明每个功能的好处。通过比较,航空照片和声音源特征有效地预测印象信息。此外,即使使用声学和图像功能预测了声音源功能,这些功能也会显示出良好的结果,以预测接近Oracle Sound-source源功能的结果。

We investigate an method for quantifying city characteristics based on impressions of a sound environment. The quantification of the city characteristics will be beneficial to government policy planning, tourism projects, etc. In this study, we try to predict two soundscape impressions, meaning pleasantness and eventfulness, using sound data collected by the cloud-sensing method. The collected sounds comprise meta information of recording location using Global Positioning System. Furthermore, the soundscape impressions and sound-source features are separately assigned to the cloud-sensing sounds by assessments defined using Swedish Soundscape-Quality Protocol, assessing the quality of the acoustic environment. The prediction models are built using deep neural networks with multi-layer perceptron for the input of 10-second sound and the aerial photographs of its location. An acoustic feature comprises equivalent noise level and outputs of octave-band filters every second, and statistics of them in 10~s. An image feature is extracted from an aerial photograph using ResNet-50 and autoencoder architecture. We perform comparison experiments to demonstrate the benefit of each feature. As a result of the comparison, aerial photographs and sound-source features are efficient to predict impression information. Additionally, even if the sound-source features are predicted using acoustic and image features, the features also show fine results to predict the soundscape impression close to the result of oracle sound-source features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源