论文标题

基于对齐的概率检查概率事件

Alignment-based conformance checking over probabilistic events

论文作者

Zheng, Jiawei, Papapanagiotou, Petros, Fleuriot, Jacques D.

论文摘要

一致性检查技术使我们能够评估某些表现出的行为,以一系列受监视的事件表示,并符合指定的过程模型。现代监测和活动识别技术,例如依靠传感器,物联网,统计和AI的技术,可以产生大量相关的事件数据。但是,与符合检查算法所需的确定性事件对数的假设相反,该数据通常以噪声和不确定性为特征。在本文中,我们将基于对齐的一致性检查扩展到概率事件日志下的功能。我们引入了加权痕量模型和加权对齐成本函数,以及一个自定义阈值参数,该参数控制事件数据与过程模型的置信度。由此产生的算法考虑了较低但很高的可能性的活动,可以更好地与过程模型保持一致。我们从形式和直观的角度解释了算法及其动机,并与使用现实生活数据集的确定性对齐相比,证明了其功能。

Conformance checking techniques allow us to evaluate how well some exhibited behaviour, represented by a trace of monitored events, conforms to a specified process model. Modern monitoring and activity recognition technologies, such as those relying on sensors, the IoT, statistics and AI, can produce a wealth of relevant event data. However, this data is typically characterised by noise and uncertainty, in contrast to the assumption of a deterministic event log required by conformance checking algorithms. In this paper, we extend alignment-based conformance checking to function under a probabilistic event log. We introduce a weighted trace model and weighted alignment cost function, and a custom threshold parameter that controls the level of confidence on the event data vs. the process model. The resulting algorithm considers activities of lower but sufficiently high probability that better align with the process model. We explain the algorithm and its motivation both from formal and intuitive perspectives, and demonstrate its functionality in comparison with deterministic alignment using real-life datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源