论文标题

二阶线性椭圆方程的dirichlet问题,带有$ l^{1} $ - 数据

Dirichlet problems for second order linear elliptic equations with $L^{1}$-data

论文作者

Kim, Hyunseok, Oh, Jisu

论文摘要

We consider the Dirichlet problems for second order linear elliptic equations in non-divergence and divergence forms on a bounded domain $Ω$ in $\mathbb{R}^n$, $n \ge 2$: $$ -\sum_{i,j=1}^n a^{ij}D_{ij} u + b \cdot D u + cu = f \; \; \ text {in $ω$} \ quad \ text {and} \ quad u = 0 \; \; \; \ text {on $ \ partialω$} $} $} $} $} $} $ and $} - {\ rm div} \ left(a d u \ right(a d u \ right) \; \; \ text {in $ω$} \ quad \ text {and} \ quad u = 0 \; \; \; \ text {on $ \ partialω$},$ $ $ a = [a^a^{a^{ij}] $是对称的,均匀的,均匀的,均匀的,均匀的,均匀的,均匀的eLlistic,and of Farish的均值(vmo)。本文的主要目的是研究两种问题的独特解决性。我们证明,如果$ω$是$ c^{1} $的类$ 1 <s <s <\ frac {3} {2} $和$ c \ ge0 $ in $ω$,然后对于l^1(ω)$中的每个$ f \ in $ f \ in $ w^{1,\ frac {n} {n} {n} {n-1},\ infty},\ infty},\ iffty},\ frac {n},\ frac {n},\ infty},\ iffty},\ _0(ω)$第一个问题。此外,在额外的条件下,$ω$是$ c^{1,1} $和l^{n,1}(ω)$的$ c^{1,1} $,我们表明,对于每个$ f \ in l^1(ω; \ m athbb {r}^n)$,第二个问题在$ l^{\ frac {n} {n-1},\ infty}(ω)$。

We consider the Dirichlet problems for second order linear elliptic equations in non-divergence and divergence forms on a bounded domain $Ω$ in $\mathbb{R}^n$, $n \ge 2$: $$ -\sum_{i,j=1}^n a^{ij}D_{ij} u + b \cdot D u + cu = f \;\;\text{ in $Ω$} \quad \text{and} \quad u=0 \;\;\text{ on $\partial Ω$} $$ and $$ - {\rm div} \left( A D u \right) + {\rm div}(ub) + cu = {\rm div} F \;\;\text{ in $Ω$} \quad \text{and} \quad u=0 \;\;\text{ on $\partial Ω$} , $$ where $A=[a^{ij}]$ is symmetric, uniformly elliptic, and of vanishing mean oscillation (VMO). The main purposes of this paper is to study unique solvability for both problems with $L^1$-data. We prove that if $Ω$ is of class $C^{1}$, $ {\rm div} A + b\in L^{n,1}(Ω;\mathbb{R}^n)$, $c\in L^{\frac{n}{2},1}(Ω) \cap L^s(Ω)$ for some $1<s<\frac{3}{2}$, and $c\ge0$ in $Ω$, then for each $f\in L^1 (Ω)$, there exists a unique weak solution in $W^{1,\frac{n}{n-1},\infty}_0 (Ω)$ of the first problem. Moreover, under the additional condition that $Ω$ is of class $C^{1,1}$ and $c\in L^{n,1}(Ω)$, we show that for each $F \in L^1 (Ω; \mathbb{R}^n)$, the second problem has a unique very weak solution in $L^{\frac{n}{n-1},\infty}(Ω)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源