论文标题
纳米光结构的设计和优化的混合监督和增强学习
Hybrid Supervised and Reinforcement Learning for the Design and Optimization of Nanophotonic Structures
论文作者
论文摘要
从较高的计算效率到实现新颖和复杂结构的发现,深度学习已成为设计和优化纳米光电电路和组件的有力框架。但是,数据驱动和基于勘探的机器学习策略在其对纳米光逆设计的有效性方面都有局限性。监督的机器学习方法需要大量的培训数据,以产生高性能模型,并且在设计空间的复杂性鉴于训练数据之外,难以推广。另一方面,基于无监督和强化的学习方法可以具有与之相关的非常漫长的培训或优化时间。在这里,我们证明了一种混合监督的学习和强化学习方法来实现纳米光子结构的逆设计,并证明这种方法可以减少训练数据的依赖性,改善模型预测的普遍性,并通过数量级缩短探索性培训时间。因此,提出的策略解决了许多现代深度学习的挑战,同时为新设计方法开辟了大门,这些方法利用了多种机器学习算法来为光子设计提供更有效和实用的解决方案。
From higher computational efficiency to enabling the discovery of novel and complex structures, deep learning has emerged as a powerful framework for the design and optimization of nanophotonic circuits and components. However, both data-driven and exploration-based machine learning strategies have limitations in their effectiveness for nanophotonic inverse design. Supervised machine learning approaches require large quantities of training data to produce high-performance models and have difficulty generalizing beyond training data given the complexity of the design space. Unsupervised and reinforcement learning-based approaches on the other hand can have very lengthy training or optimization times associated with them. Here we demonstrate a hybrid supervised learning and reinforcement learning approach to the inverse design of nanophotonic structures and show this approach can reduce training data dependence, improve the generalizability of model predictions, and shorten exploratory training times by orders of magnitude. The presented strategy thus addresses a number of contemporary deep learning-based challenges, while opening the door for new design methodologies that leverage multiple classes of machine learning algorithms to produce more effective and practical solutions for photonic design.