论文标题
带基于框架的相机的实时事件模拟
Real-time event simulation with frame-based cameras
论文作者
论文摘要
事件摄像机由于其有益的特性,例如高时间分辨率,高带宽,几乎没有运动模糊和低功耗,因此在机器人技术和计算机视觉中变得越来越流行。但是,这些相机在市场上仍然昂贵且稀缺,使它们无法获得大多数。使用事件模拟器最大程度地减少了对真实事件摄像机开发新算法的需求。但是,由于模拟的计算复杂性,现有模拟器的事件流无法实时生成,而是必须从现有视频序列或预渲染中预先计算,然后从虚拟3D场景中进行模拟。尽管这些离线生成的事件流可以用作学习任务的培训数据,但所有响应时间的应用程序都无法从这些模拟器中受益,因为它们仍然需要实际的事件摄像头。这项工作提出了模拟方法,将事件模拟的性能提高了两个数量级(使其实时能够),同时在质量评估中保持竞争力。
Event cameras are becoming increasingly popular in robotics and computer vision due to their beneficial properties, e.g., high temporal resolution, high bandwidth, almost no motion blur, and low power consumption. However, these cameras remain expensive and scarce in the market, making them inaccessible to the majority. Using event simulators minimizes the need for real event cameras to develop novel algorithms. However, due to the computational complexity of the simulation, the event streams of existing simulators cannot be generated in real-time but rather have to be pre-calculated from existing video sequences or pre-rendered and then simulated from a virtual 3D scene. Although these offline generated event streams can be used as training data for learning tasks, all response time dependent applications cannot benefit from these simulators yet, as they still require an actual event camera. This work proposes simulation methods that improve the performance of event simulation by two orders of magnitude (making them real-time capable) while remaining competitive in the quality assessment.