论文标题
通过中子恒星地壳中的板碰撞重复快速无线电爆发,并以高爆发速率
Repeating Fast Radio Bursts with High Burst Rates by Plate Collisions in Neutron Star Crusts
论文作者
论文摘要
一些重复的快速无线电爆发(FRB)来源显示出很高的爆发速率,并且物理起源仍然未知。令人难以置信的是,第一个中继器FRB 121102看起来极高的突发速率,最大值达到$ 122 \,\ Mathrm {h^{ - 1}} $,甚至更高。在这项工作中,我们建议FRB中继器的高爆发速率可能是由于年轻的中子星(NSS)的地壳中的板碰撞所致。在NS的外壳中,将涡流固定在晶格核上。当超流体中子和NS晶格之间的相对角速度非零时,固定力将作用在涡旋线上,这将导致晶状体位移以及NS外壳生长的应变。随着旋转的演化,地壳应变达到临界值,然后地壳可能会裂成板,每个板将与其相邻的板碰撞。板碰撞可以发射Aflvén波,并进一步产生FRB。在这种情况下,预测的爆发率可以达到$ \ sim 770 \,\ mathrm {h}^{ - 1} $,对于ns的磁场为$ 10^{13} \,\ rm {g} $,$ 0.01 \ $ 0.01 \,\,\ rm \ rm \ rm \ rm {s} $。我们进一步将此模型应用于FRB 121102,并预测等待时间和能量分布为$ p(t _ {\ Mathrm {w}}))\ propto t _ {\ text {w}}^{α__{t _ {t _ { \ simeq -1.75 $和$ n(e)\ text {d} e \ propto e^{α_{e}} \ text {d} e $带有$α_{e} \ simeq -1.67 $。这些特性与FRB 121102的观察结果一致。
Some repeating fast radio burst (FRB) sources show high burst rates, and the physical origin is still unknown. Outstandingly, the first repeater FRB 121102 appears extremely high burst rate with the maximum value reaching $122\,\mathrm{h^{-1}}$ or even higher. In this work, we propose that the high burst rate of an FRB repeater may be due to plate collisions in the crust of young neutron stars (NSs). In the crust of an NS, vortex lines are pinned to the lattice nuclei. When the relative angular velocity between the superfluid neutrons and the NS lattices is nonzero, a pinned force will act on the vortex lines, which will cause the lattice displacement and the strain on the NS crust growing. With the spin evolution, the crustal strain reaches a critical value, then the crust may crack into plates, and each of plates will collide with its adjacent ones. The Aflvén wave could be launched by the plate collisions and further produce FRBs. In this scenario, the predicted burst rate can reach $\sim 770\,\mathrm{h}^{-1}$ for an NS with the magnetic field of $10^{13}\,\rm{G}$ and the spin period of $0.01\,\rm{s}$. We further apply this model to FRB 121102, and predict the waiting time and energy distribution to be $P(t_{\mathrm{w}}) \propto t_{\text{w}}^{α_{t_{\text{w}}}}$ with $α_{t_{\text{w}}} \simeq -1.75$ and $N(E)\text{d}E \propto E^{α_{E}}\text{d}E$ with $α_{E} \simeq -1.67$, respectively. These properties are consistent with the observations of FRB 121102.