论文标题
知识基础问题回答:语义解析观点
Knowledge Base Question Answering: A Semantic Parsing Perspective
论文作者
论文摘要
深度学习的最新进展极大地推动了语义解析的研究。此后,在许多下游任务中进行了改进,包括Web API的自然语言接口,文本到SQL的生成等。但是,尽管与这些任务有着密切的联系,但关于知识库的问题的研究(KBQA)的进展相对缓慢。我们将其确定并归因于KBQA的两个独特挑战,模式级的复杂性和事实级别的复杂性。在这项调查中,我们将KBQA放置在更广泛的语义解析文献中,并全面描述了现有的KBQA方法如何试图应对独特的挑战。无论面对独特的挑战,我们都认为,我们仍然可以从语义解析的文献中汲取太大的灵感,这被现有的KBQA研究所忽略了。基于我们的讨论,我们可以更好地了解当前KBQA研究的瓶颈,并阐明KBQA的有前途的方向,以跟上语义解析的文献,尤其是在预训练的语言模型时代。
Recent advances in deep learning have greatly propelled the research on semantic parsing. Improvement has since been made in many downstream tasks, including natural language interface to web APIs, text-to-SQL generation, among others. However, despite the close connection shared with these tasks, research on question answering over knowledge bases (KBQA) has comparatively been progressing slowly. We identify and attribute this to two unique challenges of KBQA, schema-level complexity and fact-level complexity. In this survey, we situate KBQA in the broader literature of semantic parsing and give a comprehensive account of how existing KBQA approaches attempt to address the unique challenges. Regardless of the unique challenges, we argue that we can still take much inspiration from the literature of semantic parsing, which has been overlooked by existing research on KBQA. Based on our discussion, we can better understand the bottleneck of current KBQA research and shed light on promising directions for KBQA to keep up with the literature of semantic parsing, particularly in the era of pre-trained language models.