论文标题
普通西格尔模量方案和关节的线性几乎不太可能几乎相交
Linearity on ordinary Siegel moduli schemes and joint unlikely almost intersections
论文作者
论文摘要
本文的目的是研究安德烈(André)的猜想的$ p $ - 亚种类似物 - 更确切地说,在普通的Siegel正式模量方案的产物上,我们研究其组件是CM点或Hecke Orbits中点的点的分布。我们将产品的正式亚化学线性用作$ p $ - ad的地理位置类似物,而不是复数。此外,我们使用$ p $ -ADIC距离放松了通常的发病率关系。我们还研究了AX-LINDEMANN定理的$ P $ ADIC正式方案理论类似物。
The goal of this paper is to study a $p$-adic analog of the joint of the conjectures of André--Oort and André--Pink. More precisely, on a product of ordinary Siegel formal moduli schemes, we study the distribution of points whose components are either CM points or points in Hecke orbits. We use linearity of formal subschemes of the product as the $p$-adic analog of geodesicness over complex numbers. Moreover, we relax the usual incidence relations by using $p$-adic distance. We also study a $p$-adic formal scheme theoretic analog of the Ax--Lindemann theorem.