论文标题
在寻找独立集之间的简短重新配置序列
On finding short reconfiguration sequences between independent sets
论文作者
论文摘要
假设我们为我们提供了一个图形$ g $,两个独立集$ s $和$ t in $ g $的$ k \ geq 1 $,以及一个正整数$ \ ell \ geq 1 $。目标是确定是否存在序列$ \ langle I_0,i_1,...,i_ \ el \ el \ rangle \ rangle $的独立集合,以至于对于所有$ j \ in \ in \ {0,\ ldots,\ ldots,\ ell-1 \} $ $ i_ {j+1} $是通过预定的重新配置规则从$ i_j $获得的。我们考虑两个重新配置规则。直观地,我们将每个独立集视为放置在图形顶点上的代币集合。然后,令牌滑动优化(TSO)问题询问是否存在将$ s $转换为$ t $的最多$ \ ell $ steps的顺序,在每个步骤中,我们都可以将一个令牌从顶点滑到一个未置置的邻近的邻里顶点。在令牌跳跃优化(TJO)问题中,在每个步骤中,我们都可以将一个令牌从顶点跳到图形的任何其他空位顶点。当通过$ \ ell $在无处浓密的图形类别上通过$ \ ell $参数化时,已知TSO和TJO都是固定参数。在这项工作中,我们表明两个问题都是固定参数可用于参数$ k + \ ell + d $ on $ d $ -DECENERATE图以及参数$ | M | + \ ell +δ$在图形上具有调制器$ m $的删除,其删除留下了最大度$δ$的图。我们通过证明单独的参数$ \ ell $的结果来补充这些结果,这两个问题都变成了$ 2 $ -DECENATER图。我们的积极结果利用了Lokshtanov等人引入的家庭的独立性概念。最后,我们表明,使用此类家庭可以为标准令牌跳跃的可及性问题获得更简单,统一的算法,该问题在变性和无处浓密的图形类别上通过$ k $参数化。
Assume we are given a graph $G$, two independent sets $S$ and $T$ in $G$ of size $k \geq 1$, and a positive integer $\ell \geq 1$. The goal is to decide whether there exists a sequence $\langle I_0, I_1, ..., I_\ell \rangle$ of independent sets such that for all $j \in \{0,\ldots,\ell-1\}$ the set $I_j$ is an independent set of size $k$, $I_0 = S$, $I_\ell = T$, and $I_{j+1}$ is obtained from $I_j$ by a predetermined reconfiguration rule. We consider two reconfiguration rules. Intuitively, we view each independent set as a collection of tokens placed on the vertices of the graph. Then, the Token Sliding Optimization (TSO) problem asks whether there exists a sequence of at most $\ell$ steps that transforms $S$ into $T$, where at each step we are allowed to slide one token from a vertex to an unoccupied neighboring vertex. In the Token Jumping Optimization (TJO) problem, at each step, we are allowed to jump one token from a vertex to any other unoccupied vertex of the graph. Both TSO and TJO are known to be fixed-parameter tractable when parameterized by $\ell$ on nowhere dense classes of graphs. In this work, we show that both problems are fixed-parameter tractable for parameter $k + \ell + d$ on $d$-degenerate graphs as well as for parameter $|M| + \ell + Δ$ on graphs having a modulator $M$ whose deletion leaves a graph of maximum degree $Δ$. We complement these result by showing that for parameter $\ell$ alone both problems become W[1]-hard already on $2$-degenerate graphs. Our positive result makes use of the notion of independence covering families introduced by Lokshtanov et al. Finally, we show that using such families one can obtain a simpler and unified algorithm for the standard Token Jumping Reachability problem parameterized by $k$ on both degenerate and nowhere dense classes of graphs.