论文标题

在卡拉比YAU和通用型超曲面上的刚性和稳定平衡的曲线

Rigid and stably balanced curves on Calabi-Yau and general-type hypersurfaces

论文作者

Ran, Ziv

论文摘要

如果$ x $上的曲线$ c $稳定平衡,如果其正常捆绑$ n $的较难的纳拉西姆汉(Narasimhan)过滤的斜率以1个间隔为1。对于每个$ d \ geq n+1 $,我们构建了一些普通的pairs $(c,x)$ $ x $ $ x $ $ a $ $ a $ $ a $ p^$ p^$ p^$ p^$ p^$ c的$ c,$ c $ c $ c $ c $ c $ c。 $ x $上的均衡刚性曲线,使得Hypersurfaces $ x $的家族在Hypersurfaces的空间中是平滑的codimension $ h^1(n)$。

A curve $C$ on a variety $X$ is stably balanced if the slopes of the Harder-Narasimhan filtration of its normal bundle $N$ are contained in an interval of length 1. For each $d\geq n+1$ we construct some regular families of pairs $(C, X)$ of the expected dimension with $X$ a hypersurface of degree $d$ in $\mathbb P^n$ and $C$ a stably balanced rigid curve on $X$, such that the family of hypersurfaces $X$ is smooth codimension $h^1(N)$ in the space of hypersurfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源